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Motivation

Motivation: A new orbit integration method

1. Physically correct long time orbit dynamics

2. Low sensitivity to noise in fields

3. Efficient box counting

4. Computational efficiency

→ Long-term goal:
Kinetic modelling of distribution function moments

Michael Eder, Institute of Theoretical and Computational Physics, TU Graz
PPPL, Theory seminar, 17 June 2021
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Motivation

Local Linearization Approach

Linearization: Piecewise linear toroidal electromagnetic
fields

Mesh-based: 3D tetrahedral cells

Quasi-geometric:

Formulation preserves non-canonical symplectic form
Series expansion in time-like orbit parameter

Fortran code:

GORILLA: Guiding-center ORbit Integration with Local
Linearization Approach

Michael Eder, Institute of Theoretical and Computational Physics, TU Graz
PPPL, Theory seminar, 17 June 2021
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Derivation of integration method
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Derivation of integration method

Guiding-center approx. for charged particle orbit

Fundamentals of Plasma Physics,
Dr. Paul Bellan, Cambridge Press 2006

Lagrangian for charged-particle
motion in an electromagnetic field:

L (x, ẋ; t) =
m
2
|ẋ|2 +

e
c

ẋ · A (x, t)− eΦ (x, t) (1)

Particle position via guiding-center

x ≡ xgc + ρ (2)

Guiding-center phase-space Lagrangian:1

Lgc (xgc , J⊥, φ,w) =

[
e
c

A (xgc) + mv‖ (xgc , J⊥,w)
B (xgc)

B (xgc)

]
· ẋgc − J⊥φ̇− w (3)

1Littlejohn 1983; Cary and Brizard 2009.
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Derivation of integration method

Formulation of orbit integration method

Use the Hamiltonian form of guiding center equations2 in
curvilinear coordinates,

ẋ i =
v‖εijk

√
gB∗‖

∂A∗k
∂x j , A∗k = Ak +

v‖
ωc

Bk , (4)

v‖ = σ

(
2

mα
(w − J⊥ωc − eαΦ)

)1/2

, (5)

v2
‖

2
= U, U = U(x j). (6)

Treat v‖ as an independent variable

Replace time with orbit parameter τ : dt =
√

gB∗‖dτ
2Boozer 1980; Littlejohn 1983.
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Derivation of integration method

Formulation of orbit integration method

Set of four equations:

B∗‖
√

gẋ i =
dx i

dτ
= εijk

(
v‖
∂Ak

∂x j + 2U
∂

∂x j
Bk

ωc
+

Bk

ωc

∂U
∂x j

)
B∗‖
√

gv̇‖ =
dv‖
dτ

= εijk ∂U
∂x i

(
∂Ak

∂x j + v‖
∂

∂x j
Bk

ωc

)
(7)

Approximate Ak ,Bk/ωc, ωc and Φ by linear functions in
spatial cells:

dz i

dτ
= ai

kzk + bi (8)
z i = x i for i = 1,2,3
z4 = v‖

Michael Eder, Institute of Theoretical and Computational Physics, TU Graz
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Derivation of integration method

3D field aligned grid: tetrahedral cells I

(x1, x2, x3) is aligned to coordinate system.
E.g., (x1, x2, x3) = (s, ϑ, ϕ) or (R, ϕ,Z )
Michael Eder, Institute of Theoretical and Computational Physics, TU Graz
PPPL, Theory seminar, 17 June 2021
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Derivation of integration method

3D field aligned grid: tetrahedral cells II

Aligned to symmetry flux coordinates: (x1, x2, x3) = (s, ϑ, ϕ)
Michael Eder, Institute of Theoretical and Computational Physics, TU Graz
PPPL, Theory seminar, 17 June 2021
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Derivation of integration method

Physically correct long time orbit dynamics

Linear approximation of field quantities does not destroy
the Hamiltonian nature of the original guiding center
equations.

Non-canonical Hamiltonian form of linear ODE set

dz i

dτ
= Λij ∂H

∂z j , Λij(z) =
{

z i , z j}
τ
, (9)

with Hamiltonian H(z) = v2
‖ /2− U(x) and antisymmetric

Poisson matrix Λij(z).

Michael Eder, Institute of Theoretical and Computational Physics, TU Graz
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Derivation of integration method

Physically correct long time orbit dynamics

Liouville’s theorem is fulfilled

Coordinate set:
y = (x, J⊥, φ, v‖)

Phase space Jacobian3:

J =
∂(r,p)

∂(x, J⊥, φ, v‖)
=

mαeα
c
√

gB∗‖

Divergence of the phase space flow velocity:

1
J
∂
(
Jẏ i
)

∂y i ≡ 0

Relation holds for piecewise linear approximation.
3Littlejohn 1983.

Michael Eder, Institute of Theoretical and Computational Physics, TU Graz
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Derivation of integration method

Properties of orbit integration method

Physically correct long time orbit dynamics

preserved total energy
preserved magnetic moment
preserved phase space volume

Computationally efficient

relaxed requirement to orbit shape
lowest order approximation for time evolution
locally linear ODE set with constant coefficients

Insensitive to noise in fields

Michael Eder, Institute of Theoretical and Computational Physics, TU Graz
PPPL, Theory seminar, 17 June 2021
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Numerical solution
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Numerical solution

Numerical solution

Locally linear ODE set:

dz(τ)

dτ
= â · z + b

â and b are constant inside cells.

Formal solution:

z(τ) = z0 +
K∑

k=1

τ k

k !

(
âk−1 · b + âk · z0

)
(10)

Exact for K →∞

Michael Eder, Institute of Theoretical and Computational Physics, TU Graz
PPPL, Theory seminar, 17 June 2021
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Numerical solution

Orbit intersections with tetrahedra faces

z(τ) = z0 +
K∑

k=1

τ k

k!

(
âk−1 · b + âk · z0

)
↓

Fα(z) ≡ n(α)
i

(
x i − x i

(α)

)
= 0

↓

nα ·
(

z0 +
K∑

k=1

τ k
e

k!

(
âk−1 · b + âk · z0

)
− zα

)
= 0

3D tetrahedral cell is depicted as a 2D triangle in the
interest of simplification.

Michael Eder, Institute of Theoretical and Computational Physics, TU Graz
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Numerical solution

Runge-Kutta vs. Polynomials

Runge-Kutta (GORILLA RK4):

The ODE set is numerically solved via Runge-Kutta 4 in
an iterative scheme.

Iterative scheme uses Newton’s method and a quadratic
analytic estimation for the initial step length.

Analytic Polynomial (GORILLA Poly):

Truncation of series at K = 2,3,4

Algebraic equations: approximate solutions of various
orders in Larmor radius.

Michael Eder, Institute of Theoretical and Computational Physics, TU Graz
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Numerical solution

Dwell time & integrals of velocity powers

Dwell time of particle inside spatial cell

Analytic formulation of parallel velocity

v‖(τ) = eατ
(

v‖,0 +
β

α

)
β

α

Analytic formulation of velocity power integrals of v‖,v2
‖

and v2
⊥

Advantage:
Straightforward computation of
spatial distributions within
Monte Carlo procedures.

Michael Eder, Institute of Theoretical and Computational Physics, TU Graz
PPPL, Theory seminar, 17 June 2021
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Collisionless guiding-center orbits in 2D field
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Collisionless guiding-center orbits in 2D field

Poincare plots of guiding center orbits
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Collisionless guiding-center orbits in 2D field

Canonical toroidal angular momentum pϕ
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Collisionless guiding-center orbits in 2D field

Axisymmetric noise of electrostatic and vector
potential

ξ = 0 . . . 1, e.g. Φnoisy = Φ(1 + εΦξ)

Similar orbit shape (compared to unperturbed orbit)

Canonical toroidal angular momentum is preserved.

Michael Eder, Institute of Theoretical and Computational Physics, TU Graz
PPPL, Theory seminar, 17 June 2021
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Collisionless guiding-center orbits in 3D field
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Collisionless guiding-center orbits in 3D field

Artifact: Numerical field line diffusion

Test case: 2D field with harmonic perturbation of vector
potential

Aϕ = ψpol(s)(1 + εM cos(m0ϑ + n0ϕ)). (11)

Due to the linearization of fields for 3D configurations,
KAM surfaces can be destroyed.
→ ergodic passing particle orbit

Numerical diffusion is below the level of classical electron
diffusion (perturbed tokamak)
→ Diffusion can be safely ignored.

Michael Eder, Institute of Theoretical and Computational Physics, TU Graz
PPPL, Theory seminar, 17 June 2021
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Collisionless guiding-center orbits in 3D field

Artifact: Numerical field line diffusion

Poincaré plots of
field lines

GORILLA Poly:
34 equidistant flux
surfaces
Nϑ = Nϕ = 30
K = 2

Solid red line shows
a cross-section of
one exact
corrugated flux
surface.
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Collisionless guiding-center orbits in 3D field

Stellarator field: Poincaré projection

2400 2450 2500 2550 2600 2650 2700

0

100

200

300

400

500

0 1 2 3 4 5 6

0.37

0.38

0.39

0.4

0.41

0.42

0.43

0.44

0.45

0.46

2.4 2.6 2.8 3 3.2 3.4

0.424

0.426

0.428

Trapped ion with 3 keV

Poloidal projection at v‖ = 0 switching sign from - to +

Michael Eder, Institute of Theoretical and Computational Physics, TU Graz
PPPL, Theory seminar, 17 June 2021

28



Collisionless guiding-center orbits in 3D field

Stellarator field: Parallel adiabatic invariant J‖

Violation of Hamiltonian structure for K = 2 (attractor)

Convergence with grid size: J‖ averaged over 105 bounce
times (in b)

Michael Eder, Institute of Theoretical and Computational Physics, TU Graz
PPPL, Theory seminar, 17 June 2021
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Application I: Mono-energetic radial diffusion coefficient
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Application I: Mono-energetic radial diffusion coefficient

Mono-energetic radial diffusion coefficient D11

D11 as a function of collisionality ν∗ is evaluated with
standard Monte Carlo method.4 (10 000 test particles)

D11 =
1
2t
〈(s(t)− s0)2〉. (12)

Collisions are realized by pitch angle scattering (Lorentz
scattering operator).

Normalization:

ν∗ =
R0νc

ιv
(collisionality)

v∗E =
cEr

vB0
(Mach number)

4Boozer and Kuo-Petravic 1981.
Michael Eder, Institute of Theoretical and Computational Physics, TU Graz
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Application I: Mono-energetic radial diffusion coefficient

Mono-energetic radial diffusion coefficient D11
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Application I: Mono-energetic radial diffusion coefficient

CPU benchmark

Accuracy vs. efficiency

Accuracy: Relative error of D11

Efficiency: Relative CPU time for pure orbit integration

Boundary conditions:

Fixed collisionality ν∗ = 10−3 and Mach number v∗E = 10−3

Number of test particles: 30 000

Reference integrators:

adaptive Runge-Kutta 4/5 (rel. tolerance = 10−9)
Runge-Kutta 4

Michael Eder, Institute of Theoretical and Computational Physics, TU Graz
PPPL, Theory seminar, 17 June 2021
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Application I: Mono-energetic radial diffusion coefficient

CPU benchmark for D11
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GORILLA: Angular grid size Nϑ × Nϕ varied from 8× 8 to 60× 60.

Reference
computation:
adaptive
Runge-Kutta 4/5
(rel. tol. = 10−9)

Compared
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Application II: Confinement of fusion alphas

Confined fraction fc of 3.5 MeV fusion alphas

Numerical diffusion (due to linearization) strongly scales
with Larmor radius.

Numerical diffusion affects confined fraction fc.
Michael Eder, Institute of Theoretical and Computational Physics, TU Graz
PPPL, Theory seminar, 17 June 2021
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Application II: Confinement of fusion alphas

Relative error of fc @ t = 0.01 s vs. grid size
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Application II: Confinement of fusion alphas

CPU benchmark for fc
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Conclusion & Outlook
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Conclusion & Outlook

Benefits of the integration method

Computational efficiency (up to 10x faster than RK4)

Physically correct long time orbit dynamics

preserved total energy
preserved magnetic moment
preserved phase space volume

Formulation in general curvilinear coordinates

Low sensitivity to noise in electromagnetic fields

Straightforward computation of spatial distributions
within Monte Carlo procedures

dwell time and velocity power integrals in spatial cells
Michael Eder, Institute of Theoretical and Computational Physics, TU Graz
PPPL, Theory seminar, 17 June 2021
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Conclusion & Outlook

Limitations of the integration method

Implemented only for (quasi-)static electromagnetic
fields

Artificial chaotic diffusion in 3D fields

Magnetic flux coordinates strongly reduce chaos.
Chaotic diffusion strongly scales with Larmor radius.
Chaotic diffusion inversely scales with angular grid size.

Thermal particles: Negligibly small through moderate
grid refinement.

Fusion alphas: Chaotic diffusion affects confined
fraction.

Michael Eder, Institute of Theoretical and Computational Physics, TU Graz
PPPL, Theory seminar, 17 June 2021
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Conclusion & Outlook

Outlook & proposed project

Global Monte Carlo computations of parallel equilibrium
current density, charge density and pressure tensor
distributions

Implementation of correct time dynamics

dt
dτ

=
(√

gB∗‖
)(L)

→ Fast drift-kinetic electron solver for PIC codes,
e.g. XGC

Michael Eder, Institute of Theoretical and Computational Physics, TU Graz
PPPL, Theory seminar, 17 June 2021
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Thank you for your attention!

Documentation & Code:

Eder et al., Physics of Plasmas 27, 122508 (2020)
https://doi.org/10.1063/5.0022117

Fortran code available on GitHub
https://github.com/itpplasma/GORILLA
Publication planned at Journal of Open Source Software

Michael Eder, Institute of Theoretical and Computational Physics, TU Graz
PPPL, Theory seminar, 17 June 202143
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